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Abstract

A set of static Timoshenko beam functions is developed as the admissible functions for the free vibration analysis of
Mindlin rectangular plates with uniform elastic (translational and/or rotational) edge constraints by the use of the
Rayleigh-Ritz method. This set of beam functions is made up of two parts: the transverse deflection functions and
rotation functions, which are the static solutions of a Timoshenko beam under the transverse loads of a Fourier si-
nusoidal series distributed along the length of the beam, therefore the effect of shear deformation on the admissible
functions is taken into account. In fact, the beam is considered to be a unit width strip taken from the rectangular plate
in a direction parallel to the edge of the plate and has the end supports corresponding to the edge conditions of the
particular plate under consideration. It can be seen that the method is sound theoretically. Each of the beam functions is
a polynomial function of not more than third order plus a sine or cosine function for all cases and the change of the
boundary supports only results in a corresponding change of the coefficients of the low-order polynomial. Therefore, a
unified program with little computational efforts can be easily developed for the vibration analysis of Mindlin rect-
angular plates with arbitrary boundary conditions and thickness-span ratios. The accuracy and efficiency of the pro-
posed method are demonstrated by comparison and convergency studies. Finally, sets of reasonably accurate natural
frequencies are presented, which can serve as a supplement to the database of vibration characteristics of moderately
thick plates. © 2001 Elsevier Science Ltd. All rights reserved.

Keywords: Mindlin plate; Rectangular plate; Free vibration; Eigenfrequencies; Elastically restrained edges; Static Timoshenko beam
functions; Rayleigh-Ritz method

At present, visiting scholar, Department of Civil Engineering, The University of Hong Kong. Tel.: +86-25-443-2727; fax: +86-25-
443-1622.
E-mail address: diecnust@publicl.ptt.js.cn (D. Zhou).

0020-7683/01/$ - see front matter © 2001 Elsevier Science Ltd. All rights reserved.
PII: S0020-7683(00)00384-X



5566 D. Zhou | International Journal of Solids and Structures 38 (2001) 5565-5580

1. Introduction

Rectangular plates have been extensively used in many branches of engineering such as civil, mechanical,
aeronautical and marine engineering. The vibration analysis is essential for avoiding damages to the
structures under external dynamic loads.

It is well known that the classical plate theory (Timoshenko and Woinowsky-Kroeger, 1959) has been
successfully applied to the thin plate analysis, in which the assumption of a straight line originally
normal to the median surface of plate remains straight and normal after deformation is adopted,
which means that all transverse shear strains are equal to zero in the plate. However, with the increase
of the thickness-span ratio of the plate, shear deformation becomes increasingly important. In such a
case, the classical plate theory inevitably results in some errors. Moreover, the shear effect should be
considered when greater accuracy of modes and/or dynamic responses under high-frequency excitations
is required, even for the thin plates. Relaxing the normality assumption, Mindlin (1951), Mindlin
et al. (1956) presented a so-called first order shear deformation theory for moderately thick plates, in
which the rotary inertia effect was also considered. The original normal line has now become a straight
non-normal line which is a close approximation to the actual curved-line distribution of the shear de-
formation along the thickness of the plate in an average sense. A shear correction factor is then intro-
duced to compensate for the errors resulting from the approximation made on the non-uniform shear
strain distribution. The Mindlin plate theory has been widely employed to analyze the static and dy-
namic properties of moderately thick plates because of the fact that this theory not only retains
mathematically the two-dimensionality but also has sufficient accuracy for the plates with moderate
thickness.

Substantial references about vibrations of rectangular thin plates (Leissa, 1973) can be found. Some
investigations on the vibration of rectangular thin plates with elastically restrained edges by the use of the
Rayleigh—Ritz method have also been made (Warburton and Edney, 1984; Laurra and Gross, 1981; Zhou,
1995). Gorman (1989, 1990) studied the vibration of rectangular thin plates with symmetrically and
asymmetrically distributed uniform elastic edge constraints by using the superposition method. In com-
parison, available work on vibrations of Mindlin rectangular plates is rather limited (Liew et. al., 1995),
especially for Mindlin rectangular plates with elastically restrained edges. Magrab (1977) studied the simply
supported Mindlin orthotropic rectangular plates with rotational constraints by using the Galerkin tech-
nique. Recently, Saha et al. (1996) used the vibrating Timoshenko beam functions as the admissible
functions to study the free vibration of Mindlin rectangular plates with uniformly distributed elastic re-
straints along the edges and Chung et al. (1993) used the recurrence polynomials as the admissible functions
to investigate the vibration of orthotropic Mindlin rectangular plates with elastic rotational restraints on
edges by the Rayleigh—Ritz method, respectively. Moreover, Xiang et al. (1997) used the two-dimensional
polynomials as the admissible functions to study the vibrations of rectangular Mindlin plates with elastic
edge supports by the Ritz method and the same problems were investigated by Gorman (1997a,b) using the
superposition method.

In this paper, a set of static Timoshenko beam functions is developed as the admissible functions for the
vibration analysis of Mindlin rectangular plates with elastically restrained edges by using the Rayleigh—Ritz
method. Each of the beam functions is only a polynomial function of not more than third order plus a sine
or a cosine function, in which the coefficients of the polynomial are uniquely determined by the boundary
conditions of the plate. Both simple mathematical representation and rapid convergency demonstrate the
small computational efforts required. Comparison of results with those available from literature shows the
high accuracy of the present approach.
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2. The Rayleigh-Ritz formulae for Mindlin rectangular plates

Consider an isotropic moderately thick rectangular plate with uniform thickness /4, length ¢ and width b,
which lies in the x—y plane, as shown in Fig. 1. The surfaces of the plate are the planes z = +4/2. The edges
of the plate are elastically restrained by both translational springs and rotational springs. It is obvious that
the classical boundary conditions of the plate represent only the limiting cases as the elastic restraints
approach their natural limits of zero or infinity. According to the Mindlin plate theory, three fundamental
quantities w, i, and y, are utilized, which describe the transverse displacement of the plate median surface
and the rotations of the cross-section, respectively, along the x direction and the y direction. For free vi-
bration of the plate, the solutions of w, ¥, and ¥, have the form of

W(xvya t) = W(xvy)eiwt7 %(Xv)’a t) = lpx(x’y)eiwr/a7 l//y(xvy? [) = qjy(xvy)eiwt/bv (1)

where W (x,y), ¥.(x,y) and ¥,(x,y) are the dynamic displacement function of the plate and the dynamic
rotation functions, respectively, along the x direction and the y direction. w is the radian natural frequency
of the plate and i = v/—1.

The energy functional IT for a Mindlin plate with elastically restrained edges can be written in terms of
the maximum strain energy Up,x and the maximum kinetic energy Tp.x as

I = Umax - Tmax- (2)
Introduce the non-dimensional coordinates ¢ = x/a and n = y/b, Upax and T,y are given, respectively, by
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Fig. 1. The sketch of moderately thick rectangular plate with elastically restrained edges.
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in which, D = ER*/[12(1 — v?)] is the flexural rigidity of the plate, v is Poisson’s ratio, E is Young’s modulus
and G = E/[2(1 + v)] is the elastic modulus of shear. « is the shear correction factor and p is the density of
the plate per unit volume, &'y, k!, are the translational stiffness, respectively, along the edge, x = 0 and the
edge, x=a and kj,, k, are those, respectively, along the edge, y=0 and the edge, y=b. k,, k}, are the
rotational stiffness, respectively, along the edge, x = 0 and the edge, x =a and k], k7, are those, respectively,
along the edge, y =0 and the edge, y=5. o

Assume that functions W, ¥, and VP, are all separable in variables and can take the following forms,

respectively

oo o0

W(En) =YY eX(OY(n),  Pl&n) = iidg@i(ém(n)/a,

i=1 j=1 i=1 j=1

WEm) = 30D X (O )b @

where ¢;;, d; and e; (i,j=1,2,3,...) are the unknown constants, X;(£), @;(¢) and Y;(n), ¥;(n) are the
appropriate admissible functions, respectively, in the ¢ and # directions. Substituting Eq. (4) into Egs. (2)
and (3) and truncating the number of terms of the series in x and y directions up to / + 1 and J + 1 re-
spectively, then setting the first variation of the energy functional IT zero value results in the following
eigenvalue equation

ENEG
(1K1 - @0y (M) (@ =0 (5)

in which, [K] is the stiffness matrix of the plate, [M] is the mass matrix of the plate and {c}, {d} and {e} are
the column matrices of the unknown constants, respectively, given by

{C} = [011,0127 <y ClyC215C22y - -5 C2gy o CrTLCRy e ,CU]T7
{d} = [dy1,d1, ... .d1y,do1, o, ... oy, ... dyydp, ... dy] (6)
{e} = [6117912, ce ey €17,€21,€225 -5 €2),5 .., €11,€12, ... ,ey]T
and
[ch’] [ch] [Kce} [Mw] [Mcd} [Mce}
K] = (Kaa]  [Kee] | [M] = Ma]  [Mae] |, (7)
symmetric (K] symmetric [M..]

where
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Here Q is referred to as the non-dimensional natural frequency. A is referred to as the aspect ratio of the
plate and y is referred to as the thickness-span ratio of the plate. R is referred to as the shear correction
coefficient of Mindlin plates.

3. A set of static Timoshenko beam functions

Investigate the static solutions of a uniform Timoshenko beam under a series of Fourier sinusoidal
loads, which is a unit width strip taken from the particular Mindlin rectangular plate under consideration in
a direction parallel to the edge of the plate. Without losing generality, here only a strip in the x direction is
considered, as shown in Fig. 2. The Timoshenko beam theory is utilized to describe the stress-placement
relations as follows

e = ey = Gax, (wx) - dffj’) (10)

where M (x) is the bending moment of the beam, ¥V (x) is the transverse shear force of the beam, y/(x) is the
rotation of the cross-section of the beam, z(x) is the transverse deflection of centroidal axis of the beam, x,
is the shear correction factor of the Timoshenko beam, ET is the flexural rigidity of the beam, G is the shear
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Fig. 2. The uniform Timoshenko beam under arbitrary load ¢(x).

modulus of rigidity and A is the area of the cross-section of the beam. The equilibrium equations of stress
are given by

v, P g (i

From Egs. (10) and (11), one has

2 3
GAx, (lp(x) - %) - Elddli(zx) , El%gx) = q(x).

(12)

The load ¢(x) in any case can be expanded into a Fourier sinusoidal series in the interval (0, a) as follows

q(x) = (E[/a4)ZQi(in)4 sin (inx/a). (13)
=1
Introducing the following non-dimensional coordinate and parameter
El

f—x/a, RX—W7 (14)
the solutions of Eq. (12) can be written as

=020, Y=Y 0¥/, (15)

=1 =1

in which,

z(€) = Gy + Cié + GE /2 + C4(E/6 — RE) + [Re(im)” + 1] sin (in), (16)

V(&) = C) + C5& + C4& /2 + imcos (ind), (17)

in the above two equations, Cj". (j=10,1,2,3) are the unknown constants, which can be evaluated by the
boundary conditions of the beam, given by the following equations

M(0) =~k (0),  M(1)=kyy(l),  V(0) =kez(0), V(1) = —kyz(1). (18)
Substituting Egs. (10), (16) and (17) into the above equations, one has

Cy = (anf{ —anfy)/ 4, Ci = (anfs — anf})/ 4, Cl = —0,0Cy + (im)’,

_ o (19)
G = Bo(Cy +in),

where
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ay = oo + o — oo (1/6 — Ry), apy = wa (14 f/2),

ar = oxo(l + B.,/2), an = —(Bw + Ba + BuwbBa): 4= anan — ana,
fi=(in)[1 = (=1)" = o (1/6 — R,)] — ota By (im) /2,

fi=in[Bo+ (=1)' By + BuBal + (im)* (1 + B /2).

(20)

It can be easily demonstrated that the solutions of CJ", (j=0,1,2,3) in Eq. (19) always exist because of
4= Oc)COOCxlﬁJCO(l/3 +RX) + OC)clﬁx()ﬁxl(l/?, +R‘C> + axoaﬂﬂx(] xl(l/lz +RX) > 07 (21)

except that the boundary constraints of the beam cannot remove the rigid body movements from the beam.
However, for the beams permitting rigid body movements one can readily add the modes of the rigid body
movements into the solutions described by Eq. (15). For example, if the beam is free—free, one can take the
first and the second beam functions, respectively, as

=1, ;=0 and z=¢E-05 =1, (22)

the third and higher beam functions supplied by the set of simply—simply supported Timoshenko beam
functions which can be obtained by letting o,y = o,y = oo and f,, = f5,; = 0 in the above analysis. If the
beam is restrained only by a translational spring on one edge and the other one is free, then one can take the
first beam function as
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Fig. 3. The first two static Timoshenko beam functions for the beam with symmetrically elastically restrained edges: (O) denotes
=150, f=35,y=0.001 and (@) denotes & = 50, f =5, y =0.2. (O) denotes « = 100, f =10, y = 0.001 and (M) denotes o = 100,
B =10, y=0.2; (O) denotes o = 500, f = 50, y = 0.001 and (®) denotes & = 500, =50, y =0.2; (A) denotes o = 10%, f = 108,
y = 0.001 and (A) denotes o« = 103, = 108, y = 0.2.
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Table 1
Convergency study of frequency parameter Q = (wb*/n*)\/ph/D for a thin square plate (//b = 0.001) with four edges equally elas-
tically restrained

1 xJ Ql QZ Q} Q4 .Q5 .Q(, 97 Qg Qg
a=2_8, =2
1x1 0.5583
2%2 0.5570 0.9798 0.9798 1.8074
3x3 0.5541 0.9647 0.9647 1.7972 2.8893 3.0500 4.0610 4.0610 6.8583
4x4 0.5541 0.9643 0.9643 1.7941 2.8891 3.0497 4.0513 4.0513 6.8572
5x5 0.5538 0.9627 0.9627 1.7934 2.8352 3.0249 4.0391 4.0391 6.8520
6% 6 0.5538 0.9627 0.9627 1.7923 2.8352 3.0248 4.0354 4.0354 6.8518
7x7 0.5537 0.9620 0.9620 1.7921 2.8240 3.0224 4.0344 4.0344 6.8412
8 x8 0.5537 0.9619 0.9619 1.7918 2.8240 3.0224 4.0325 4.0325 6.8411
Xiang et al. (1997) 0.5537 0.9605 0.9605 1.7720 2.7898 3.0169 3.9790 3.9790 6.7436
o« =100, f =100
Ix1 1.7890
2%2 1.7854 2.6215 2.6215 3.4891
3x3 1.7605 2.5832 2.5832 3.4881 4.7096 4.7710 5.8178 5.8178 8.5193
4 x4 1.7595 2.5649 2.5649 3.4382 4.7092 4.7705 5.7775 5.7775 8.5179
5x5 1.7576 2.5626 2.5626 3.4382 4.6595 4.7228 5.7355 5.7355 8.4348
6% 6 1.7575 2.5612 2.5612 3.4342 4.6593 4.7226 5.7320 5.7320 8.4346
7x7 1.7571 2.5608 2.5608 3.4342 4.6535 4.7171 5.7274 5.7274 8.4256
8§x8 1.7571 2.5605 2.5605 3.4335 4.6534 4.7170 5.7266 5.7266 8.4255
Xiang et al. (1997)  1.7566 2.5599 2.5599 3.4317 4.6483 4.7135 5.7184 5.7184 8.4111
a=1176, f =98
1x1 3.1660
2x2 3.1660 5.8184 5.8184 7.9992
3x3 3.1252 5.7540 5.7540 7.9948 8.7242 8.9858 10.838 10.838 13.417
4 x4 3.1245 5.6948 5.6848 7.7064 8.7240 8.9855 10.577 10.577 12.843
5%5 3.1080 5.6715 5.6715 7.6982 8.5471 8.8844 10.406 10.406 12.778
6x6 3.1075 5.6489 5.6489 7.6142 8.5467 8.8840 10.336 10.336 12.542
7x7 3.1032 5.6422 5.6422 7.6108 8.5057 8.8603 10.296 10.296 12.527
8 x8 3.1030 5.6352 5.6352 7.5870 8.5055 8.8601 10.277 10.277 12.477
Xiang et al. (1997)  3.1006 5.6256 5.6256 7.5669 8.4857 8.8481 10.244 10.244 12.447
Z] = éa lrbl =1 (23)
for the beam with a free edge at £ =1 and
leé_lv ‘plzl (24)

for the beam with the free edge at £ = 0. The second and higher beam functions supplied by such a set of
beam functions in which the free edge of the beam has been changed into the simply-supported edge. If the
beam is restrained only by rotational springs on edges, one can take the first beam function as fol-lows

a=1, ¥ =0, (25)

the second and higher beam functions supplied by such a set of beam functions in which a zero transverse
displacement has been added to either end of the beam. It is clear that in the above analysis, letting the
elastic stiffness of the springs approach zero or infinity can give all kinds of classical boundary conditions of
the beam. In actual numerical computations, in order to maintain the generality of the program, infinite
stiffness can be represented through giving large quantities such as 108.

The static Timoshenko beam functions in the y direction can also be written down only by changing the
parameters in the x direction into those in the y direction, such as a is replaced by b, R, is replaced by R,, a.o
and oy are replaced by o9 and a, respectively, fi,, and f,, are replaced by f, and f,; respectively. In
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Table 2
Convergency study of frequency parameter Q = (wb?/n?)\/ph/D for a moderately thick square plate (h/b = 0.2) with four edges
equally elastically restrained

I xJ .Q] QZ 93 Q4 QS Qs Q7 Qg Qg
x=10,5=>5

1 x1 0.6214

2x2 0.6186 1.1024 1.1024 1.8098

3x3 0.6156 1.0866 1.0866 1.7949 2.8518 2.9045 3.5693 3.5693 5.2330
4 x4 0.6155 1.0864 1.0864 1.7931 2.8516 2.9042 3.5656 3.5656 5.2322
5x5 0.6152 1.0837 1.0837 1.7910 2.7981 2.8605 3.5330 3.5330 5.1992
6x6 0.6152 1.0837 1.0837 1.7892 2.7979 2.8603 3.5299 3.5299 5.1988
7x7 0.6151 1.0826 1.0826 1.7885 2.7861 2.8522 3.5238 3.5238 5.1908
8 x 8 0.6151 1.0826 1.0826 1.7872 2.7860 2.8521 3.5215 3.5215 5.1906
%=50, =10

1x1 1.2448

2x2 1.2423 1.9082 1.9082 2.5911

3x3 1.2281 1.8832 1.8832 2.5904 3.4684 3.5241 4.1891 4.1891 5.7338
4 x4 1.2276 1.8729 1.8729 2.5655 3.4681 3.5239 4.1746 4.1746 5.7336
5x5 1.2258 1.8693 1.8693 2.5651 3.4042 3.4657 4.1282 4.1282 5.6655
6x6 1.2256 1.8682 1.8682 2.5620 3.4041 3.4656 4.1256 4.1256 5.6653
7x7 1.2251 1.8669 1.8669 2.5618 3.3903 3.4537 4.1171 4.1171 5.6538
8x8 1.2250 1.8667 1.8667 2.5608 3.3901 3.4536 4.1158 4.1158 5.6536
% =100, f = 100

1x1 1.6538

2x2 1.6516 2.4411 2.4411 3.2025

3x3 1.6333 24119 24119 3.2020 4.0087 4.0702 4.7899 4.7899 6.3036
4 x4 1.6323 2.3927 2.3927 3.1506 4.0084 4.0699 4.7582 4.7582 6.3036
5x5 1.6298 2.3891 2.3891 3.1506 3.9494 4.0148 4.7095 4.7095 6.2152
6x6 1.6295 2.3863 2.3863 3.1428 3.9493 4.0147 4.7045 4.7045 6.2151
Tx17 1.6287 2.3853 2.3853 3.1428 3.9375 4.0038 4.6952 4.6952 6.1982
8x8 1.6286 2.3846 2.3846 3.1405 3.9374 4.0038 4.6936 4.6936 6.1981

Xiang et al. (1997) 1.6216 2.3760 2.3760 3.1281 3.9096 3.9773 4.6584 4.6584 6.1357

keeping with the fact that the beam under consideration is a unit width strip taken from the plate, the
following relations can be utilized

A=h, EI=(1-V)D, Ke=x,  R.=(1-v)R (26)

For the small Poisson’s ratio v (in most cases, v = 0.3 or 1/3), the flexural stiffness ET of the beam also can
be replaced by the flexural stiffness D of the plate and the shear correction coefficient of the beam R, can be
replaced by the shear correction coefficient of the Mindlin plate R without significant errors. The first two
static Timoshenko beam functions are given in Fig. 3, with respect to different support stiffness and
thickness-span ratio of the beam. It can be seen that this set of static Timoshenko beam functions varies
with the support stiffness and on which the effect of shear correction factor is obvious, especially for the
beam with large rotational stiffness.

4. Comparison and convergency studies

In the following computations, The Gaussian integral formulation of 24 points is used numerically to
evaluate the integrals in Eq. (9). Poisson’s ratio v = 0.3 and the shear correction factor x = 5/6 are used in



5574 D. Zhou | International Journal of Solids and Structures 38 (2001) 5565-5580

Table 3
Comparison study of frequency parameter Q = (wb*/n*)\/ph/D for a moderately thick square plate (4/b = 0.1) with elastically re-
strained edges

Sources .Q] QQ Q3 Q4 Q5 QG Q7 Qg Qg
The plate with three clamped edges and the remaining one elastically restrained: o = § = 100
Present 2.6820 4.3394 5.7503 7.2321 7.6054 9.9868 10.139 11.289 12.054
Saha et al. 2.6849 4.3510 5.7553 7.2551
(1996)
The plate with four edges elastically restrained: o = f§ = 10
Present 0.6238 1.1635 1.1635 1.9763 3.3646 3.4020 4.2661 4.2661 6.6049
Saha et al. 0.6237 1.1631 1.1631 1.9769
(1996)
The plate with four edges elastically restrained: o = = 1000
Present 29176 5.0656 5.0656 6.7119 7.4491 7.7571 8.9463 8.9463 10.732
Saha et al. 2.9227 5.0630 5.0630 6.7002
(1996)
The simply supported plate with four edges elastically restrained against rotation: f = 10
Present 2.7053 5.4355 5.4355 7.8676 9.3848 9.4115 11.535 11.535 14.213
Chungetal. 2.704 5.438 5.440 7.872 9.398 9.425
(1993)
The simply supported plate with four edges elastically restrained against rotation: =150
Present 3.1126 5.9980 5.9980 8.4774 10.013 10.083 12.172 12.172 14.861
Chung et al.  3.111 5.999 6.001 8.482 10.021 10.094
(1993)
The simply supported plate with four edges elastically restrained against rotation: =100
Present 3.1970 6.1266 6.1266 8.6246 10.170 10.251 12.336 12.336 15.035
Chung et al.  3.194 6.123 6.130 8.630 10.175 10.260
(1993)
The simply supported plate with four edges elastically restrained against rotation: = 1000
Present 3.2845 6.2643 6.2643 8.7856 10.344 10.437 12.520 12.520 15.233
Chung et al.  3.281 6.263 6.267 8.792 10.345 10.443
(1993)
The plate with four edges only elastically restrained against translation: o= 3.4404, =0
Present 0.3673 0.5260 0.5260 1.4307 2.0086 2.4610 3.3405 3.3405 5.6911
Gorman 0.3673 0.5260 0.5260 1.404
(1997b)
The plate with four edges only elastically restrained against translation: o= 34.404, =0
Present 0.9748 1.5859 1.5859 2.2944 2.6803 3.0556 3.8681 3.8681 5.9599
Gorman 0.9720 1.582 1.582 2.285
(1997b)

the computations. The static Timoshenko beam functions derived in the last section are used as the
admissible functions of the Mindlin rectangular plates. Taking the admissible functions of the plates in the
x direction as an example, one has

X&) =z(0),  Di() =¥i(Q). (27)

Similarly, one can also obtain the admissible functions of the plates in the y direction. It should be pointed
out that using Timoshenko beam functions as the admissible functions of Mindlin rectangular plates are
sound theoretically because of the fact that the Timoshenko beam is a one-dimensional equivalent of the
Mindlin rectangular plates such as the Bernoulli-Euler beam is a one-dimensional equivalent of the clas-
sical thin plates.
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Table 4
The first nine frequency parameters Q = (wb*/n*)/ph/D for moderately thick rectangular plates (4/b = 0.2) with two opposite free
edges, the other two edges only elastically restrained against translation (f = 0)

0('[‘_0, ‘1}(1 .Q] QZ .Q} 94 Q5 Q() .Q7 Qg Q()
a/b=1

55 0.30522 0.30755 0.53964 1.3117 1.8447 2.2089 2.8913 2.9082 4.6247
50, 50 0.69412 0.82250 1.5797 1.9268 2.1634 2.7919 3.1839 3.3823 4.7189
500, 500 0.88307 1.3081 2.7583 2.8767 3.2089 4.3584 5.0980 5.1368 5.3785
5000, 5000 0.91051 1.4254 2.9541 3.1485 3.6157 4.9856 5.3230 5.9648 6.3290
5,10 0.34010 0.36813 0.66584 1.3584 1.8740 2.2377 2.9090 2.9365 4.6335
10, 50 0.47942 0.60383 1.1781 1.6751 2.0587 2.5540 3.0600 3.1878 4.6769
100, 500 0.82757 1.1387 2.3416 2.5060 2.6785 3.8583 4.1292 4.5195 4.9306
1000, 5000 0.90423 1.3980 2.9093 3.0851 3.5166 4.8267 5.2811 5.7547 6.0876
a/b=1.5

55 0.13599 0.13816 0.24271 0.84976 0.95270 1.8234 1.9983 2.2477 2.5494
50, 50 0.31351 0.39951 0.71804 1.0540 1.2802 1.9696 2.0423 2.3675 2.6378
500, 500 0.40273 0.75582 1.3796 1.7131 2.2817 2.5097 2.8339 2.9816 3.6500
5000, 5000 0.41617 0.86850 1.5420 2.0496 2.4530 3.1091 3.5199 3.5600 4.8988
5,10 0.15171 0.16734 0.29969 0.86335 0.97342 1.8318 2.0011 2.2543 2.5539
10, 50 0.21461 0.29845 0.53660 0.96975 1.1618 1.9067 2.0226 2.3167 2.5980
100, 500 0.37629 0.61880 1.0915 1.4356 1.9688 2.1702 2.4636 2.7804 3.2289
1000, 5000 0.41304 0.84021 1.5029 1.9582 2.4079 2.9520 3.3495 3.3585 4.5211
a/b=05

55 1.1945 1.2042 2.0331 2.2834 2.9279 4.6904 4.7271 6.6312 6.9051
50, 50 2.5647 2.7103 3.6292 5.6359 5.6625 5.9547 6.8641 8.3092 8.3934
500, 500 3.1038 3.5380 4.8610 6.8614 8.7036 8.9583 9.3831 9.8643  11.264
5000, 5000 3.1714 3.6498 5.0368 7.0516 9.1189 9.4124 9.5565 10.411 11.890
5,10 1.3345 1.3801 2.4003 2.5135 3.2390 4.7699 4.9048 6.8016 7.0137
10, 50 1.8471 1.9933 2.9830 4.2542 4.6560 5.2382 5.9621 7.7655 7.9294
100, 500 2.9562 3.2926 4.4604 6.4254 7.7099 7.9454 8.7612 9.0226 10.192
1000, 5000 3.1562 3.6257 4.9996 7.0113 9.0269 9.3124 9.5195 10.291 11.752

In order to evaluate the accuracy of the present method, first of all, comparison and convergency studies
are carried out in this section. Tables 1 and 2, respectively, give the first nine frequency parameters for thin
(h/b = 0.001) and moderately thick (#/b = 0.2) square plates with four edges equally elastically restrained
(9 =00y =0y = 0y = o, By = By = By = B, = B), with respect to the number of terms of the static
Timoshenko beam functions used. From these two tables, the rapid and monotonically downward con-
vergency is observed for both thin plate (/b = 0.001) and moderately thick plate (/b = 0.2). The com-
parison of results with those available from Xiang et al. (1997) shows that rather satisfactory accuracy
can be obtained by using only a small number of terms of the static Timoshenko beam functions. It can
be seen that the maximum error of the fundamental frequency is less than 2.1% even if only one term of
the static Timoshenko beam function is used in the computations. A further comparison study, given in
Table 3, is made for moderately thick rectangular plates (2/b = 0.1) with various boundary conditions.
Eight terms of the static beam functions in each direction are used. In order to provide reasonable
comparison, the values of both Poisson’s ratio and the shear correction factor are the same as those used in
literature such as v = 0.3 and x = 0.85 used by Saha et al. (1996), v = 0.3 and x = 7n?/12 used by Chung
et al. (1993), v = 0.333 and k = 0.8601 used by Gorman (1997b). Good agreement is observed for all cases.
It should be noted that by letting both R, and R, equal to zero, this set of static Timoshenko beam
functions will automatically degenerate into a set of static Bernoulli-Euler beam functions which has been
successfully applied to the vibration analysis of thin rectangular plates with edges elastically restrained



5576 D. Zhou | International Journal of Solids and Structures 38 (2001) 5565-5580

Table 5
The first nine frequency parameters Q = (wb?/n*)+/ph/D for moderately thick rectangular plates (4/b = 0.2) with two opposite free
edges, the other two edges simply supported and elastically restrained against rotation (« = 0)

Bro> B (o} Q Qs Q4 Qs Qs Q; (o7 Q9
a/b=1

1,1 1.0579 1.5158 2.9905 3.2858 3.7434 5.0928 5.3404 6.1301 6.5002
55 1.3396 1.6953 3.0489 3.5375 3.9422 5.1929 5.3569 6.3116 6.6577
50, 50 1.6977 1.9578 3.1518 3.9415 4.2723 5.3722 5.3892 6.6361 6.9389
500, 500 1.7724 2.0169 3.1783 4.0378 4.3529 5.3983 5.4188 6.7193 7.0112
1,5 1.1981 1.6040 3.0193 3.4143 3.8438 5.1428 5.3486 6.2219 6.5797
2,10 1.3180 1.6837 3.0468 3.5317 3.9972 5.1907 5.3566 6.3097 6.6556
10, 50 1.5876 1.8750 3.1182 3.8155 4.1680 5.3143 5.3784 6.5330 6.8493
100, 500 1.7548 2.0030 3.1720 4.0150 4.3338 5.3961 5.4076 6.6995 6.9904
a/b=1.5

1,1 0.48893 0.90750 1.6238 2.1316 2.4700 3.2288 3.5988 3.6991 4.9598
55 0.63406 0.98241 1.7831 2.2394 2.4875 3.3670 3.6401 3.8065 4.9642
50, 50 0.83479 1.1167 2.0791 2.4591 2.5284 3.6739 3.7380 4.0513 49762
500, 500 0.87959 1.1520 2.1587 2.5226 2.5419 3.7681 3.7706 4.1288 4.9807
1,5 0.56069 0.94416 1.7045 2.1855 2.4787 3.2986 3.6194 3.7531 4.9620
2,10 0.62341 0.97937 1.7817 2.2391 2.4877 3.3700 3.6409 3.8087 4.9644
10, 50 0.77097 1.0721 1.9822 2.3855 2.5141 3.5708 3.7042 3.9681 49719
100, 500 0.86895 1.1435 2.1395 2.5072 2.5385 3.7452 3.7626 4.1098 4.9796
alb=0.5

1,1 3.5581 3.9573 5.1983 7.1250 9.3337 9.5935 9.6176 10.580 12.022
55 4.1942 4.4725 5.4667 7.2328 9.6226 9.6360 9.8851 10.773 12.139
50, 50 4.8208 4.9958 5.7586 7.3567 9.6868 9.8844 10.130 10.956 12.256
500, 500 4.9293 5.0878 5.8119 7.3802 9.6967 9.9226 10.167 10.985 12.275
1,5 3.8754 4.2128 5.3309 7.1785 9.4845 9.6153 9.7567 10.679 12.079
2,10 4.1319 4.4224 5.4420 7.2239 9.5983 9.6361 9.8648 10.757 12.126
10, 50 4.6426 4.8461 5.6739 7.3204 9.6714 9.8160 10.065 10.906 12.222
100, 500 4.9043 5.0666 5.7996 7.3748 9.6944 9.9140 10.159 10.978 12.271

(Zhou, 1995). However, directly using the static Bernoulli-Euler beam functions as the admissible func-
tions of the Mindlin rectangular plates will result in obvious errors, especially for plates with large support
stiffness. For example, the fundamental frequency parameter for the moderately thick square plate
(h/b = 0.2) with four edges equally elastically restrained (o« = f# = 100) is Q; = 1.6422 using eight terms of
the static Bernoulli-Euler beam functions in each direction, which is higher than that (Q; = 1.6333) using
only three terms of the static Timoshenko beam functions in each direction and the error will further
increase with the increase of the stiffnesses of supports (for fully clamped plates, the error will reach a
maximum).

5. Numerical results

In this section, some numerical results are given, which can serve as a supplement to the database of
vibration characteristics of moderately thick plates. In all the following computations, eight terms of the
static Timoshenko beam functions are used in each direction. Moreover, Poisson’s ratio v and shear cor-
rection factor x have been set as 0.3 and 5/6, respectively. Tables 4-6 give the first nine frequency pa-
rameters Q; (i =1,2,3,...9) of moderately thick rectangular plates (/b = 0.2) with two opposite free
edges in the y direction and the other two edges elastically restrained. Figs. 4-6 give the first six frequency
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The first nine frequency parameters Q = (wb*/n*)/ph/D for moderately thick rectangular plates (4/b = 0.2) with two opposite free

edges, the other two edges symmetrically elastically restrained

o, ﬁ Ql QZ .Q} 94 Q5 96 Q7 Qg Qg
a/b=1
5,1 0.30842 0.30915 0.67543 1.3515 1.9451 2.3556 2.9109 3.0539 4.6297
5,10 0.31037 0.31482 0.92088 1.4505 2.0122 2.8989 2.9659 3.4544 4.6399
5,50 0.31108 0.31623 0.99682 1.4899 2.0197 2.9904 3.1320 3.6279 4.6469
5, 5000 0.31131 0.31664 1.0206 1.5034 2.0206 2.9987 3.2114 3.6886 4.6484
50, 1 0.75186 0.84065 1.5915 1.9336 2.1743 2.9133 3.1956 3.4775 4.7188
50, 10 0.86095 0.88542 1.6198 1.9519 2.1886 3.2256 3.2681 3.7498 4.7206
50, 50 0.89439 0.90323 1.6305 1.9599 2.1912 3.2374 3.4255 3.8729 4.7229
50, 5000 0.90481 0.90935 1.6341 1.9627 2.1912 3.2411 3.4807 3.9169 4.7229
5000, 1 1.0533 1.5036 2.9731 3.2493 3.6921 5.0184 5.3252 6.0254 6.3802
5000, 10 1.4705 1.7725 3.0511 3.6244 3.9847 5.1519 5.3370 6.2702 6.5865
5000, 50 1.6803 1.9274 3.1066 3.8593 4.1743 5.2460 5.3486 6.4380 6.7277
5000, 5000 1.7607 1.9901 3.1318 3.9578 4.2553 5.2883 5.3548 6.5115 6.7897
a/b=1.5
5,1 0.13774 0.13828 0.30400 0.85773 1.0772 1.8643 1.9984 2.3353 2.5912
5,10 0.13853 0.14027 0.41699 0.88235 1.3968 1.9991 2.0001 2.4508 2.9044
5, 50 0.13881 0.14090 0.45265 0.89482 1.5286 2.0022 2.0720 2.4673 3.1113
5, 5000 0.13887 0.14108 0.46389 0.89959 1.5739 2.0028 2.1005 2.4712 3.1906
50, 1 0.34025 0.40244 0.72340 1.0560 1.3514 2.0001 2.0417 2.4340 2.6873
50, 10 0.39092 0.41172 0.73671 1.0625 1.5590 2.0404 2.1026 2.5183 2.9857
50, 50 0.40652 0.41660 0.74193 1.0660 1.6533 2.0406 2.1594 2.5307 3.1730
50, 5000 0.41138 0.41849 0.74368 1.0674 1.6868 2.0404 2.1819 2.5333 3.2450
5000, 1 0.48663 0.89622 1.6010 2.0855 2.4556 3.1503 3.5274 3.5893 49115
5000, 10 0.70479 1.0089 1.8441 2.2443 2.4704 3.3419 3.5663 3.7276 4.9405
5000, 50 0.82398 1.0889 2.0196 2.3703 2.4867 3.5034 3.6056 3.8478 4.9406
5000, 5000 0.87186 1.1252 2.0998 24314 2.4963 3.5840 3.6280 3.9095 4.9407
a/b=05
5,1 1.2047 1.2197 2.2967 2.5401 3.2566 4.7230 4.8828 6.9895 7.2492
5,10 1.2211 1.2421 2.3161 3.3634 3.8513 4.7677 5.2103 7.1877 7.7619
5, 50 1.2255 1.2476 2.3205 3.5915 4.0262 4.7779 5.3199 7.2578 7.7820
5, 5000 1.2268 1.2492 2.3208 3.6604 4.0798 4.7789 5.3547 7.2792 7.7842
50, 1 2.7515 2.8444 3.6564 5.6279 5.7118 5.9919 6.8918 8.3192 8.4234
50, 10 3.0976 3.1052 3.7203 5.6141 5.8090 6.0667 6.9532 8.3210 8.4874
50, 50 3.1874 3.2011 3.7450 5.6105 5.8397 6.0910 6.9745 8.3188 8.5072
50, 5000 3.2133 3.2330 3.7530 5.6085 5.8494 6.0987 6.9813 8.3163 8.5126
5000, 1 3.5475 3.9428 5.1779 7.1036 9.2805 9.5613 9.5743 10.516 11.951
5000, 10 4.4462 4.6731 5.5573 7.2509 9.6278 9.6650 99175  10.771 12.103
5000, 50 4.7953 4.9653 5.7198 7.3181 9.6537 9.7981 10.043 10.864 12.162
5000, 5000 4.9136 5.0652 5.7768 7.3423 9.6634 9.8375 10.081 10.894 12.182
parameters Q; (i =1,2,3,...,6) of Mindlin rectangular plates with four edges equally elastically restrained

with respect to thickness-span ratio y from 0.001 to 0.2. Figs. 7-9 give the first six frequency parameters
Q (i=1,2,3,...,6) of Mindlin rectangular plates with two opposite edges simply supported in the y di-
rection and the other two edges symmetrically elastically restrained with respect to thickness-span ratio y
from 0.001 to 0.2. From these tables, it can be observed that the eigenfrequency parameters decrease as the
thickness-span ratio y increases. This is mainly due to the effect of the shear deformation and the rotary
inertia. This effect becomes more pronounced for plates with greater edge constraints and for plates vi-
brating in higher modes.
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Fig. 4. The first six frequency parameters Q; (i =1,2,3,...,6) of Mindlin rectangular plates with four edges equally elastically re-
strained as the function of thickness-span ratio y when o =10, f =5, (a) A= 1.0 and (b) A = L.5.
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Fig. 5. The first six frequency parameters ©; (i =1,2,3,...,6) of Mindlin rectangular plates with four edges equally elastically re-
strained as the function of thickness-span ratio y when o« = 100, f = 10, (a) A = 1.0 and (b) 2 = L.5.
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Fig. 6. The first six frequency parameters Q; (i =1,2,3,...,6) of Mindlin rectangular plates with four edges equally elastically re-
strained as the function of thickness-span ratio y when o = 1000, § = 100, (a) A = 1.0 and (b) A = 1.5.
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Fig. 7. The first six frequency parameters ; (i = 1,2, 3,...,6) of Mindlin rectangular plates with two opposite edges simply supported
and the other two edges symmetrically elastically restrained as the function of thickness-span ratio y when o = 10, f =5, (a) A= 1.0
and (b) 2 =1.5.
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Fig. 8. The first six frequency parameters @, (i = 1,2, 3,...,6) of Mindlin rectangular plates with two opposite edges simply supported
and the other two edges symmetrically elastically restrained as the function of thickness-span ratio y when o = 100, § = 10, (a) 2 = 1.0
and (b) 2 =1.5.
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Fig. 9. The first six frequency parameters ©; (i = 1,2, 3,...,6) of Mindlin rectangular plates with two opposite edges simply supported
and the other two edges symmetrically elastically restrained as the function of thickness-span ratio y when « = 1000, f = 100, (a)
4=1.0and (b) 1= 1.5.
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6. Conclusions

In this paper, a set of static Timoshenko beam functions is developed as the admissible functions
for the vibration analysis of moderately thick rectangular plates with elastically restrained edges in the
Rayleigh-Ritz method. Each of the beam functions is a polynomial function of not more than third order
plus a sine or cosine function. The coefficients of the polynomial are uniquely decided by the boundary
conditions of the particular Mindlin rectangular plate under consideration. Thus a general program can be
easily written for the plate with arbitrary thickness and support conditions. The convergency and com-
parison studies demonstrate the high accuracy and low computational cost of the present method. Some
meaningful results are provided as a supplement to database of vibration characteristics of moderately
thick plates.
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